Fiber from beans, fruits, and vegetables was associated with positive alterations in human gut microbiome

gut-microbiome

Microbiota

The human body contains over 10 times more microbial cells than human cells, although the entire microbiome only accounts for about for 1-3% total body mass,[6] with some weight-estimates ranging as high as 3 pounds (approximately 48 ounces or 1,400 grams). Research into the role that microbiota in the gut might play in the human immune system started in the late 1990s.[7] The microbiome of the gut has been characterised as a “forgotten organ”,[8] and the possibility has been raised that “the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms”.[9] The human microbiome may have a role in auto-immune diseases like diabetes, rheumatoid arthritis, muscular dystrophy, multiple sclerosis, fibromyalgia, and perhaps some cancers.[10] A poor mix of microbes in the gut may also aggravate common obesity.[11][12][13] Since some of the microbes in the human body can modify the production of neurotransmitters known to occur in the brain, it may also relieve schizophrenia, depression, bipolar disorder and other neuro-chemical imbalances.[14]

The microbes being discussed are generally non-pathogenic (they do not cause disease unless they grow abnormally); they exist in harmony and symbiotically with their hosts.[15] Moreover, it has been stated that microbiome and host emerged as a unity along evolution by a process of integration.[16]

Effects on cognition

Microbes are also implicated in depression. The pathogenic bacteria Borrelia burgdorferi causes Lyme disease which causes depression in up to 2/3 of all cases.[39]Non-pathogenic bacteria are also implicated in depression in which bacterial populations are suppressed. One model of depression is periodic separation of infant mice from their mothers. These mice show reductions in Lactobacillus and Bifidobacterium species, functional gut abnormalities, increased corticosterone (stress hormone) levels, weight loss, and causes them to not swim as much in a forced swim test as control mice, indicating behavioural despair. Treating the mice with Lactobacillus lowered corticosterone levels and gut abnormalities.[40] Another experiment has replicated the effect that germ free mice have an exaggerated stress response and also found reduced expression of brain-derived neurotrophic factor in the cortex and hippocampus.[41] Another experiment showed that treating the maternally separated mice with a probiotic culture of Bifodobacterium infantis minimizes weight loss, causes mice to swim longer and causes an increase in the amount of the serotonin precursor tryptophan produced.[42] Increasing serotonin levels through selective serotonin reuptake inhibitors is the primary treatment of depression in humans. Human patients with depression are less able to properly digest fructose,[43] which is also associated with a reduction in tryptophan production.[44] Eliminating fructose from their diet improved their depression.[45]

Anxiety

Gut microbes are also implicated in anxiety disorders. In humans, anxiety disorders are common in patients with disturbed gut flora.[46] The bacteria Campylobacter jejuni has been shown to cause anxious behaviour in mice.[47] Germ free mice show less anxious behaviour and also less NR2B mRNA expression selectively in the central amygdala which might be responsible for the anxiolytic behaviour since NR2B antagonists have an anxiolytic effect on behaviour.[48] The behavioural change might also be caused by increased brain-derived neurotrophic factor (BDNF) mRNA expression possibly inducing plasticity in the dentate granular layer of the hippocampus.[49] BDNF and the hippocampus are implicated in memory. Increased gut bacterial diversity has been shown to improve both working and reference memory as well as reducing anxiety-like behaviour.[50]

Autism

Autistic populations have a unique microbiome consisting of more clostridial species.[51] Half of all autistic children with gastrointestinal dysfunction were found to have the bacteria Sutterella which was completely absent in non-autistic children with gastrointestinal dysfunction.[52] There is evidence that for some children with late-onset autism antibiotics can alleviate symptoms temporarily.[53]

Immune system

The symbiotic relationship between animal host and microbiota has a significant impact on shaping the immune system. The immune system is able to recognize the types of bacteria that are harmful to the host and combats them, while allowing the helpful bacteria to carry out their functions. After an infant is born completely sterile, their gut is quickly populated by commensal bacteria that affect the immune response, resulting in future tolerance to that bacteria. This early colonization helps to establish the symbiotic microbiome inside the host early in its life. The bacteria are also able to stimulate lymphoid tissue associated with the gut mucosa. This enables the tissue to produce antibodies for pathogens that may enter the gut. It has been found that bacteria may also play a role in the activation of TLRs (toll-like receptors) in the intestines. TLRs are a type of PRR (pattern recognition receptor) used by host cells to help repair damage and recognize dangers to the host. This could be important in immune tolerance and autoimmune diseases. Pathogens could influence this symbiotic coexistence leading to immune dysregulation and susceptibility to diseases. This could provide new direction for managing immunological and metabolic diseases.[54]

Human microbiome 

The human microbiome consists of about 100 trillion microbial cells, outnumbering human cells 10 to 1.[55] It can significantly affect human physiology. For example, in healthy individuals the microbiota provide a wide range of metabolic functions that humans lack.[56] In diseased individuals altered microbiota are associated with diseases such as neonatal necrotizing enterocolitis,[57] inflammatory bowel disease[58] and vaginosis.[59]

Fiber from beans, fruits, and vegetables was associated with positive alterations in human gut microbiome

Peer-Reviewed PLoS One. 2015; 10(4): e0124599. 
Published online 2015 Apr 15. doi:  10.1371/journal.pone.0124599

Increasing evidence suggests that the composition of the human gut microbiome is important in the etiology of human diseases; however, the personal factors that influence the gut microbiome composition are poorly characterized. Animal models point to sex hormone-related differentials in microbiome composition. In this study, we investigated the relationship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 humans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex, BMI, and fiber intake with overall gut microbiome composition and specific taxon abundances were assessed by permutational MANOVA and multivariate logistic regression, respectively. We found that sex was associated with the gut microbiome composition overall (p=0.001). The gut microbiome in women was characterized by a lower abundance of Bacteroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respectively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in humans. Better understanding of these relationships may have significant implications for gastrointestinal health and disease prevention.

Full Research Article >>>

References

  1.  Lederberg, J; McCray, AT (2001). "'Ome Sweet 'Omics—a genealogical treasury of words"Scientist 15: 8.
  2. Jump up ^ "The NIH Human Microbiome Project". Genome Res 19 (12): 2317–2323. 2009. doi:10.1101/gr.096651.109.
  3. Jump up ^ Backhed, F; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. (2005). "Host-Bacterial Mutualism in the Human Intestine". Science 307: 1915–1920. doi:10.1126/science.1104816.
  4. Jump up ^ Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. (2007). "The Human Microbiome Project". Nature 449: 804–810. doi:10.1038/nature06244PMID 17943116.
  5. Jump up ^ Ley, R.E.; Peterson, D.A.; Gordon, J.I. (2006). "Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine". Cell 124: 837–848. doi:10.1016/j.cell.2006.02.017.
  6. Jump up ^ MacDougall, Raymond (13 June 2012). "NIH Human Microbiome Project defines normal bacterial makeup of the body"NIH. Retrieved 2012-09-20.
  7. Jump up ^ Penders, J., Stobberingh, E. E., van den Brandt, P. A. and Thijs, C. (2007). "The role of the intestinal microbiota in the development of atopic disorders". Allergy62 (11): 1223–1236. doi:10.1111/j.1398-9995.2007.01462.x
  8. Jump up ^ O'Hara, A. M. and Shanahan, F. (2006). "The gut flora as a forgotten organ. EMBO reports", 7 (7): 688–693. doi:10.1038/sj.embor.7400731
  9. Jump up ^ Round, J. L. and Mazmanian, S. K. (2009). "The gut microbiota shapes intestinal immune responses during health and disease". Nature Reviews: Immunology9 (5): 313–323. doi:10.1038/nri2515
  10. Jump up ^ Wu, Shaoguang et al. “A Human Colonic Commensal Promotes Colon Tumorigenesis via Activation of T Helper Type 17 T Cell Responses.” Nature medicine 15.9 (2009): 1016–1022. PMC. Web. 21 May 2015.
  11. Jump up ^ Turnbaugh, Peter J., et al. "A core gut microbiome in obese and lean twins." nature 457.7228 (2009): 480-484.
  12. Jump up ^ Ridaura, Vanessa K., et al. "Gut microbiota from twins discordant for obesity modulate metabolism in mice." Science 341.6150 (2013): 1241214.
  13. Jump up ^ Turnbaugh, Peter J., et al. "An obesity-associated gut microbiome with increased capacity for energy harvest." Nature 444.7122 (2006): 1027-131.
  14. Jump up ^ Bravo, Javier A., et al. "Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve." Proceedings of the National Academy of Sciences 108.38 (2011): 16050-16055.
  15. Jump up ^ Madigan, Michael T. (2012). Brock biology of microorganisms (13th ed.). San Francisco: Benjamin Cummings. ISBN 9780321649638.
  16. Jump up to: a b Salvucci, E. (2014). "Microbiome, holobiont and the net of life". Critical Reviews in Microbiology: 1. doi:10.3109/1040841X.2014.962478.
  17. Jump up to: a b Bosch, T. C. G.; McFall-Ngai, M. J. (2011). "Metaorganisms as the new frontier". Zoology 114 (4): 185–190. doi:10.1016/j.zool.2011.04.001PMID 21737250.
  18. Jump up ^ Poreau B., Biologie et complexité : histoire et modèles du commensalisme. PhD Dissertation, University of Lyon, France, 2014.
  19. Jump up to: a b c Turnbaugh, P. J.; Hamady, M.; Yatsunenko, T.; Cantarel, B. L.; Duncan, A.; Ley, R. E.; Sogin, M. L.; Jones, W. J.; Roe, B. A.; Affourtit, J. P.; Egholm, M.; Henrissat, B.; Heath, A. C.; Knight, R.; Gordon, J. I. (2008). "A core gut microbiome in obese and lean twins"Nature 457 (7228): 480–484. doi:10.1038/nature07540PMC 2677729PMID 19043404.
  20. Jump up ^ Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011). "Toward defining the autoimmune microbiome for type 1 diabetes"The ISME Journal 5 (1): 82–91. doi:10.1038/ismej.2010.92PMC 3105672PMID 20613793.
  21. Jump up ^ Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA; Kong; Conlan; Deming; Davis; Young; Bouffard; Blakesley; Murray; Green; Turner; Segre (2009). "Topographical and Temporal Diversity of the Human Skin Microbiome"Science 324 (5931): 1190–2. Bibcode:2009Sci...324.1190Gdoi:10.1126/science.1171700PMC 2805064PMID 19478181.
  22. Jump up ^ Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G. M.; Koenig, S. S. K.; McCulle, S. L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C. O.; Brotman, R. M.; Davis, C. C.; Ault, K.; Peralta, L.; Forney, L. J. (2010). "Colloquium Paper: Vaginal microbiome of reproductive-age women"Proceedings of the National Academy of Sciences 108 (Supplement_1): 4680–4687. doi:10.1073/pnas.1002611107PMC 3063603PMID 20534435.
  23. Jump up ^ Zimmer, Carl (20 April 2011). "Bacteria Divide People Into 3 Types, Scientists Say"The New York Times. Retrieved 21 April 2011a group of scientists now report just three distinct ecosystems in the guts of people they have studied.
  24. Jump up ^ Arumugam, Manimozhiyan et al. (March 2010). "Enterotypes of the human gut microbiome"Nature 473 (7346): 174–80. Bibcode:2011Natur.473..174.doi:10.1038/nature09944PMC 3728647PMID 21508958.
  25. Jump up ^ Ivanov II, de Llanos Frutos R, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR (2008). "Specific microbiota direct the differentiation of Th17 cells in the mucosa of the small intestine"Cell Host Microbe 4 (4): 337–349. doi:10.1016/j.chom.2008.09.009PMC 2597589PMID 18854238.
  26. Jump up ^ Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW; Chanson; Cox; Young; Rodrigues; Fischman; Waller (2004). "Status and Trends of Amphibian Declines and Extinctions Worldwide" (PDF). Science 306 (5702): 1783–6. Bibcode:2004Sci...306.1783Sdoi:10.1126/science.1103538PMID 15486254.
  27. Jump up ^ Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN (2007). "Innate immune defenses of amphibian skin: antimicrobial peptides and more". Animal Conservation 10 (4): 425–8. doi:10.1111/j.1469-1795.2007.00150.x.
  28. Jump up ^ Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA; Antonopoulos; Berg Miller; Wilson; Yannarell; Dinsdale; Edwards; Frank; Emerson; Wacklin; Coutinho; Henrissat; Nelson; White (2009). "Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases"Proc. Natl. Acad. Sci. USA 106(6): 1948–53. Bibcode:2009PNAS..106.1948Bdoi:10.1073/pnas.0806191105PMC 2633212PMID 19181843.
  29. Jump up ^ Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomás AA, Foster CE, Pauly M, Weimer PJ, Barry KW, Goodwin LA, Bouffard P, Li L, Osterberger J, Harkins TT, Slater SC, Donohue TJ, Currie CR (2010). Sonnenburg, Justin, ed. "An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity"PLoS Genet 6 (9): e1001129. doi:10.1371/journal.pgen.1001129PMC 2944797PMID 20885794.
  30. Jump up ^ Russell SL, , Gold MJ et al. (May 2012). "Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma."EMBO Rep. 13 (5): 440–7. doi:10.1038/embor.2012.32PMID 22422004.
  31. Jump up ^ Russell SL, Gold MJ et al. (Aug 2014). "Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases."J Allergy Clin Immunol. 135: 100–9. doi:10.1016/j.jaci.2014.06.027PMID 25145536.
  32. Jump up ^ Faith JJ, Ahern PP, Ridaura VK et al. (Jan 2014). "Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice."Sci Transl Med. 6 (220): 220. doi:10.1126/scitranslmed.3008051PMC 3973144PMID 24452263.
  33. Jump up ^ Barfod, KK; Roggenbuck, M; Hansen, LH; Schjørring, S; Larsen, ST; Sørensen, SJ; Krogfelt, KA (2013). "The murine lung microbiome in relation to the intestinal and vaginal bacterial communities". BMC Microbiol 13: 303. doi:10.1186/1471-2180-13-303.
  34. Jump up ^ Remy W, Taylor TN, Hass H, Kerp H; Taylor; Hass; Kerp (1994). "Four hundred-million-year-old vesicular arbuscular mycorrhizae" (PDF). Proc. Natl. Acad. Sci. USA 91 (25): 11841–3. Bibcode:1994PNAS...9111841Rdoi:10.1073/pnas.91.25.11841PMC 45331PMID 11607500.
  35. Jump up ^ Chibucos MC, Tyler BM (2009). "Common themes in nutrient acquisition by plant symbiotic microbes, described by the Gene Ontology"BMC Microbiology. 9(Suppl 1): S6. doi:10.1186/1471-2180-9-S1-S6.
  36. Jump up ^ Kloepper, J. W (1993). "Plant growth-promoting rhizobacteria as biological control agents". In Metting, F. B., Jr. Soil microbial ecology: applications in agricultural and environmental management. New York: Marcel Dekker Inc. pp. 255–274. ISBN 0-8247-8737-4.
  37. Jump up ^ Bloemberg, G. V.; Lugtenberg, B. J. J. (2001). "Molecular basis of plant growth promotion and biocontrol by rhizobacteria". Current Opinion in Plant Biology 4 (4): 343–350. doi:10.1016/S1369-5266(00)00183-7PMID 11418345.
  38. Jump up ^ Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005). "Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects"Appl Environ Microbiol. 71 (9): 4951–9. doi:10.1128/AEM.71.9.4951-4959.2005PMC 1214602PMID 16151072.
  39. Jump up ^ Fallon, B. A.; Nields, J. A. (1994). "Lyme disease: A neuropsychiatric illness". The American journal of psychiatry 151 (11): 1571–1583. PMID 7943444.
  40. Jump up ^ Gareau, M. G.; Jury, J.; MacQueen, G.; Sherman, P. M.; Perdue, M. H. (2007). "Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation"Gut 56 (11): 1522–1528. doi:10.1136/gut.2006.117176PMC 2095679PMID 17339238.
  41. Jump up ^ Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X. N.; Kubo, C.; Koga, Y. (2004). "Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice"The Journal of Physiology 558 (Pt 1): 263–275. doi:10.1113/jphysiol.2004.063388PMC 1664925PMID 15133062.
  42. Jump up ^ Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J. F.; Dinan, T. G. (2010). "Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression". Neuroscience 170 (4): 1179–1188. doi:10.1016/j.neuroscience.2010.08.005PMID 20696216.
  43. Jump up ^ Ledochowski, M.; Widner, B.; Sperner-Unterweger, B.; Propst, T.; Vogel, W.; Fuchs, D. (2000). "Carbohydrate malabsorption syndromes and early signs of mental depression in females". Digestive diseases and sciences 45 (7): 1255–1259. doi:10.1023/A:1005527230346PMID 10961700.
  44. Jump up ^ Ledochowski, M.; Widner, B.; Murr, C.; Sperner-Unterweger, B.; Fuchs, D. (2001). "Fructose malabsorption is associated with decreased plasma tryptophan". Scandinavian journal of gastroenterology 36 (4): 367–371. doi:10.1080/003655201300051135PMID 11336160.
  45. Jump up ^ Ledochowski, M.; Widner, B.; Bair, H.; Probst, T.; Fuchs, D. (2000). "Fructose- and sorbitol-reduced diet improves mood and gastrointestinal disturbances in fructose malabsorbers". Scandinavian journal of gastroenterology 35 (10): 1048–1052. doi:10.1080/003655200451162PMID 11099057.
  46. Jump up ^ Mikocka-Walus, A. A.; Turnbull, D. A.; Moulding, N. T.; Wilson, I. G.; Andrews, J. M.; Holtmann, G. J. (2007). "Controversies surrounding the comorbidity of depression and anxiety in inflammatory bowel disease patients". Inflammatory Bowel Diseases 13 (2): 225–234. doi:10.1002/ibd.20062PMID 17206706.
  47. Jump up ^ Goehler, L. E.; Park, S. M.; Opitz, N.; Lyte, M.; Gaykema, R. P. A. (2008). "Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior"Brain, Behavior, and Immunity 22 (3): 354–366. doi:10.1016/j.bbi.2007.08.009PMC 2259293PMID 17920243.
  48. Jump up ^ Rodrigues, S. M.; Schafe, G. E.; Ledoux, J. E. (2001). "Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning". The Journal of neuroscience : the official journal of the Society for Neuroscience 21 (17): 6889–6896. PMID 11517276.
  49. Jump up ^ Neufeld, K. M.; Kang, N.; Bienenstock, J.; Foster, J. A. (2011). "Reduced anxiety-like behavior and central neurochemical change in germ-free mice". Neurogastroenterology & Motility 23 (3): 255–264, e119. doi:10.1111/j.1365-2982.2010.01620.xPMID 21054680.
  50. Jump up ^ Li, W.; Dowd, S. E.; Scurlock, B.; Acosta-Martinez, V.; Lyte, M. (2009). "Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria". Physiology & Behavior 96 (4–5): 557–567. doi:10.1016/j.physbeh.2008.12.004PMID 19135464.
  51. Jump up ^ Finegold, S. M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M. L.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.; Marlowe, E. M.; Collins, M. D.; Lawson, P. A.; Summanen, P.; Baysallar, M.; Tomzynski, T. J.; Read, E.; Johnson, E.; Rolfe, R.; Nasir, P.; Shah, H.; Haake, D. A.; Manning, P.; Kaul, A. (2002). "Gastrointestinal Microflora Studies in Late‐Onset Autism". Clinical Infectious Diseases 35 (Suppl 1): S6–S16. doi:10.1086/341914PMID 12173102.
  52. Jump up ^ Williams, B. L.; Hornig, M.; Parekh, T.; Lipkin, W. I. (2012). "Application of Novel PCR-Based Methods for Detection, Quantitation, and Phylogenetic Characterization of Sutterella Species in Intestinal Biopsy Samples from Children with Autism and Gastrointestinal Disturbances"MBio 3 (1): e00261–e00211. doi:10.1128/mBio.00261-11PMC 3252763PMID 22233678.open access publication - free to read
  53. Jump up ^ Sandler, R. H.; Finegold, S. M.; Bolte, E. R.; Buchanan, C. P.; Maxwell, A. P.; Väisänen, M. L.; Nelson, M. N.; Wexler, H. M. (2000). "Short-term benefit from oral vancomycin treatment of regressive-onset autism". Journal of child neurology 15 (7): 429–435. doi:10.1177/088307380001500701PMID 10921511.
  54. Jump up ^ Nikoopour, E; Singh, B (2014). "Reciprocity in microbiome and immune system interactions and its implications in disease and health". Inflamm Allergy Drug Targets 13 (2): 94–104. doi:10.2174/1871528113666140330201056PMID 24678760.
  55. Jump up ^ Savage, D. C. (1977). "Microbial Ecology of the Gastrointestinal Tract". Annual Review of Microbiology 31: 107–133. doi:10.1146/annurev.mi.31.100177.000543PMID 334036.
  56. Jump up ^ Gill, S. R.; Pop, M.; Deboy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E. (2006). "Metagenomic Analysis of the Human Distal Gut Microbiome"Science 312(5778): 1355–1359. doi:10.1126/science.1124234PMC 3027896PMID 16741115.
  57. Jump up ^ Mitchum, Rob (2012-03-05). "Bacterial frontier could yield future cures: UChicago scientists find untapped potential in the "microbiome" of bacteria inside the human body." (Web feature). The University of Chicago. Retrieved 2013-02-26.
  58. Jump up ^ Aas, J.; Gessert, C. E.; Bakken, J. S. (2003). "RecurrentClostridium difficileColitis: Case Series Involving 18 Patients Treated with Donor Stool Administered via a Nasogastric Tube". Clinical Infectious Diseases 36 (5): 580–585. doi:10.1086/367657PMID 12594638.
  59. Jump up ^ Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah (2015). "Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health". Frontiers in Physiology 6doi:10.3389/fphys.2015.00081ISSN 1664-042X.